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We introduce a systematic way of implementing a sequence of constrained annealed averages which
converges to the quenched average in one-dimensional systems with dichotomic disorder. It is formulat-
ed in the context of products of random matrices where the constraints correspond to imposing that
each type of n-ple of consecutive matrices appears with the correct frequency according to the given
probability distribution in the annealed average. We apply the method to a one-dimensional disordered
Ising model, where the constraints have the effect of preventing the disappearance of frustration.

PACS number(s): 05.50.+q, 02.50.—r

The idea of studying systems with quenched disorder
by annealed models has a long history. In the framework
of magnetic systems, Morita [1] noted that a quenched
average is formally equivalent to an appropriate annealed
average. Although this result is important from a
theoretical point of view, it is not very useful for estimat-
ing a quenched average, since the equivalent annealed
model has the same degree of difficulty as the original
one.

A more practical approach is to consider an annealed
version of the model where one physically relevant con-
straint is imposed: for instance, a concentration of im-
purities in the Ising model with diluted random couplings
[2] frustration on elementary plaquettes in spin glasses
[3,4], or the frequency of a matrix in the product of two
independent random matrices [5]. In fact, by means of
Lagrange multipliers, it is possible to introduce a method
to perform annealed averages with an arbitrary number
of constraints related to self-averaging intensive quanti-
ties [6]. Its thermodynamic interpretation allows one to
distinguish between relevant and irrelevant constraints.
Indeed the Lagrange multiplier can be regarded as the
chemical potential related to the work necessary to freeze
the constrained quantity. Irrelevant quantities are those
which can be frozen without work, so that annealed and
constrained annealed averages have the same value.
Moreover this approach can be applied to a product of
random transfer matrices and thus is useful not only for
Ising models but also for quantum problems such as the
localization in the Anderson model [7].

In this paper, we use the method of [6], in order to
reproduce quenched averages by a convergent sequence
of relevant constraints, in the case of dichotomic disorder
in one dimension. In principle, the results might be ex-
tended to multinomial disorder distributions, and, more
importantly, to higher dimensions via finite size scaling.

Let us briefly discuss the difference between quenched
and annealed averages in the context of Ising models with
partition function Zy(3)=Tre ~B* where N is the num-
ber of spins, # is the Hamiltonian, and S is the inverse
temperature. In the presence of disorder, Z, itself is a
random variable, although the typical free energy is given
by the so-called quenched average (over the disorder)
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fN=_—B—ﬁanN . (1)

In the thermodynamic limit N — 0, all disorder realiza-

tions (with the exception of a set of zero probability mea-
sure) have the same free energy

. 1 .
m ———InZy= =f. 2
1\}1 Nln N th n=f (2)

This property is called the self-average, since (InZy)/N
becomes a nonrandom quantity for N— oo. The calcula-
tion of the quenched free energy is a difficult problem
even in simple one-dimensional models. In practice, it is
much easier to estimate the quenched average InZ by the
annealed average InZ, obtaining a lower bound of f.
However, annealed averages are often very bad approxi-
mations and, more importantly, can fail to describe even
the qualitative aspects of a disordered system. This is
due to the fact that in an annealed average the disorder
variables (for instance couplings between spins or mag-
netic fields in a random Ising model) can arrange them-
selves to minimize the free energy, while in a quenched
model they are frozen in some given realizations. The
latter is a realistic assumption, since, in general, the dis-
order variables have much longer evolution times than
the thermodynamic variables (e.g., spins). As a conse-
quence, a disorder realization of a system can be frustrat-
ed. In other terms, there exist realizations where
different spin configurations are energetically equivalent
at sufficiently low temperatures, and the system has a
problematic choice.

An analogous situation characterizes a well-known
mathematical problem: the product of random matrices
[7]. Let us suppose a matrix A, that depends on a ran-
dom variable 77, and consider a product of N of these ma-
trices, Aql, RN A,,N, where 7, . . .,y are independent
identically distributed random variables. The so-called
maximum Lyapunov exponent

N
T I1 A,

i=1

(3)

A= lim —l—ln

N— o
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represents a characteristic quantity of the random prod-
uct (the overbar denotes the average over the {%,} distri-
bution). The multiplicative ergodic theorem of Oseledec
[8] assures us that the following limit exists and is unique
for almost all {7;} realizations (apart from a set of zero
probability measure)

N
Tr [ Avi

i=1

A= lim i;ln for almost all {7;} . 4)

N—

Comparing (1) and (3), one realizes the common points
between disorder systems and products of random ma-
trices. In fact, the maximum Lyapunov exponent A, as
well as the free energy f, is a difficult quantity to com-
pute. Following the comparison, one can introduce the
annealed version L, of the Lyapunov exponent:

N
Tr [T A,

i=1

L,= lim %ln , (5)

N—

which is an upper bound of A, but it is often inadequate
even as a qualitative approximation.

As a specific example of a product of random matrices,
we study the one-dimensional Ising model with Hamil-
tonian

H=—FJo0;41— 3 hio;, (6)

where J=1 is the positive coupling, h;=H +hu; is a ran-
dom field (H>0, A>0), and {7;} are independent ran-
dom variables which assume the values 7;==%1 with
equal probability. Let us stress that in this paper we do
not want to discuss the problem of random field Ising
models and phase transitions, which is widely discussed
in the literature.

All the following arguments can be repeated in a
straightforward way for any product of binomial in-
dependent random matrices. Indeed, we can write the
quenched free energy of the model as the product of
transfer random matrices:

. 1 N
=— lim ——=In (Tr A , @)
f N-— o0 ﬁN l-l;ll 7),']
where
BU+H+hn) B —J+H+hn,)

e e
Ay = | p—J—H—hn)  BU—H—hn)

e e

The quenched free energy is thus given by f=—A/8,
where A is the maximum Lyapunov exponent of the ma-
trix product.

The method of constrained annealed averages allows
one to obtain an upper bound L of the Lyapunov ex-
ponent:

N
—Nu-(a—a)
e Tr [T A,

i=1

ZA, (8

L 1
L= lim —1
n}tln Nlj;nao N n
where p={u,,...
which fix M
a={a,...

sy} are M Lagrange multipliers
self-averaging intensive  quantities
, Q) to their mean values &={ay,...,a;}
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in the limit N — o, so that the set of disorder realizations
selected by the constraints is an ensemble of full 5 proba-
bility measures.
In our case, the simplest quantity to be considered is
1 N
a=y i§1 ;> 9)

with a;=0. This constraint is derived by the large num-
ber law and leads to the estimate

L, = min In[max. eigenvalue G,(u;)], (10)
By

with
Gi(p)=1(Ae "+ A_").

The previous expression of G(u,) is obtained by a calcu-
lation which is identical to an annealed average without
constraints; in other terms, the argument of the loga-
rithm in (8) is equal to the Nth power of a transfer matrix
G(p;) corresponding to a particular one-dimensional
nonrandom system, depending on the multiplier p,. Its
eigenvalue is given by the secular equation, which re-
quires the solution of a second order polynomial, while
the minimization over u; corresponds to the solution of a
fourth order polynomial.

In the case of an average magnetic field H=0, it is pos-
sible to show that the value of the multiplier that realizes
the minimum is uf =0. This means that imposing a;=0
does not require any thermodynamic work, and there is
no difference between annealed averages with or without
constraint, as a consequence of the invariance of the
Hamiltonian (6) under a simultaneous inversion of all
fields and spins at H=0.

In general, the annealed average without constraints,

L,=1n[max. eigenvalue G,(#,=0)],

can be very different from A, while L, is often a reason-
able estimate, as shown in Fig. 1. In Fig. 2, we show the
relative error of L with respect to the numerical value of
A obtained by a numerical simulation, at varying H and A
with inverse temperature S=1. The error is maximum
when the parameters satisfy the relation # =H +2J.

In the particular context of our model, we can give a
simple justification of this result. The condition
h=H +2J is one which frustrates a spin in a site.
Indeed, consider the case of a site i with random field
h;=H —h (that is, y; = — 1) and with two spins up in the
two neighbors sites; see Fig. 3(a). The energy of the
configuration o;+1 is E,=—2J—H +h, while if
o;,=—1 the energy is E_=—E_,.. The two
configurations are degenerate when E, =F_ =0. How-
ever, the constrained annealed system can still move its
random fields to minimize free energy, though the num-
ber of sites where 17; =+1 is fixed to be N/2. It follows
that this does not exhibit the local frustration of the
quenched system, since it can separate itself into two
parts (e.g., the first N/2 sites with 7; = + 1, followed by a
sequence of N/2 variables 77; = —1). In this situation, if
the temperature is not too high, the constraint
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Maximum Lyapunov exponent

FIG. 1. Annealed averages without constraints L, (full line),
and with constraints L, (dashed line) and L, (dotted line) com-
pared with the numerical results for the maximum Lyapunov
exponent (circles) for =1 and H=0.5 as functions of 4. The
size of the circles does not represent the error of the numerical
estimates, which is much lower.

a;=(1/N)3n; =0 is not sufficient to obtain a good quali-
tative description of the quenched system. In fact, we
must impose a further constraint on the system that does
not permit the formations of these islands of random
variables of the same sign. Such islands lead to a
predominance of 7;m;,,=+1 with respect to
n;n;+1=—1 while, in a typical realization of the
quenched system, the law of large numbers implies that

azfﬁganl:O- (11
In the more general context of a product of random
matrices, and without any reference to frustration, im-
posing the constraints ;=0 and a,=0 is equivalent to
considering only sequences where the number of every
possible  pair of consecutive  matrices (i.e.,
A A A A_,,...) appears with a frequency
which is equal to the probability in the thermodynamic
limit. In our case each type of couple has probability 1.
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FIG. 2. Ising model (6) with B=1: relative difference be-
tween L, and the numerical value of the Lyapunov exponent A,
as functions of H and h.
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FIG. 3. Illustration of a frustrated spin configuration in (a) in
elementary segment of one site; and (b) a segment of two sites.
The spins are represented by the arrows; the dashed vertical line
represents the random field H —h; and the solid line represents
the positive J coupling.

The estimate of the Lyapunov exponent with two con-
straints is

. . 1 —N(p,a,+p,a,)
L,=min lim —In |e T
Ky N— oo N

As in the case of one constraint [see formula (10)], L, is
given by the minimization over the Lagrange multipliers
w1y and p, of the logarithm of the maximum eigenvalue of
the 4 X4 transfer matrix

L, = min In[max. eigenvalue G,(u,u,)], (13)
Hysky
with
A_He“lﬂ_r“z A, e Tty
Galppp) =~ A HTE At

In Fig. 1 one sees that the new constraint @, =0 permits
us to obtain a very accurate estimate of the Lyapunov ex-
ponent. Figure 4 gives the relative error of L, with
respect to the Lyapunov exponent as a function of H and
h (B=1): it is always below 1.5%. With two constraints,
the error is at a maximum when the parameters verify the
relation h =H +J.

We can again understand this finding by relating it to a
frustrated situation, now involving the spins on two sites
[see Fig. 3(b)]. Indeed, consider two random fields
h;=h; .;=H —h and two spins up on the neighbor sites.
If h=H +J, there exist two energetically equivalent
configurations where the two spins on the sites (i and
i+1) have the same direction (up or down). The annealed
system with constraints a;=0 and a,=0 can avoid this
frustrated situation, selecting configurations of islands of
size N/4: two of them with fields equal to H +h and
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FIG. 4. Ising model (6) with
B=1: relative difference be-
tween L, and numerical value of
the Lyapunov exponent A, as
functions of H and A.

H —h, respectively, and the other two islands with vari-
ables {7;} which have alternated signs.

Our constraints can easily be generalized to prevent
the corresponding annealed systems from choosing par-
ticular disorder realizations of equilibrium which ignore
frustration over segments with larger and larger number
of sites. For a segment of size n —1, this goal can be
achieved by imposing that in the product of random ma-
trices (7), each type of n-ple of consecutive matrices ap-
pears with the right frequency (in the thermodynamic
sense), e.g., among the triples A,;A,;A,, has to ap-
pear N/8 times when N — o0.

In terms of the 7’s, we have to perform annealed aver-
ages with constraints on all the 2" ! quantities of the

type

M=

NiMi+s,

T Mits, o (14)
1

1
N i

where {s;,...,s,] are k integers such that:
1<s,<5,< "+ <s;=n—1[9]. The choice k=0 corre-
sponds to a; (9). For example, for n=3 we have to intro-
duce two new Lagrange multipliers p; and u; related to

z[~

NiMi+2 >
1

as
i

(15)

IM=z IM=

MiMi+1Mi+2 »
1

Q
>
i
2|~

1

together with u,; and u, related to a; and a,, respectively,
given by (9) and (11).

In practice, the problem can be reduced to the deter-
mination of the largest eigenvalue of a matrix G, () of
size 2"X2", as provided in the Appendix. The upper
bound L, is then given by a minimization on the vector
of multipliers p={p, 9, - . .} :

= n}tin In[max. eigenvalue G, (u)] . (16)

A moment of reflection shows that
A<L,=L, forn>m. (17)

The computation of L; for H=0.5 and =1 is shown
in Fig. 5, where one sees that there is a considerable im-
provement over the estimate L,. However, the frustra-
tion on segments larger than n=2 still produces a
difference between L; and A which attains its maximum
(0.2%) when h ~ 1.

For a vanishing magnetic field H=0, as a generaliza-
tion of what discussed for n=1, it is possible to prove by
symmetry arguments that the constraints on quantities of
type (14) with products of an odd number of 7’s are ir-
relevant, so that the corresponding Lagrange multipliers
are zero [9].

More important, the constraints on the n-ples of ma-
trices that we have considered are very general in a wide
class of functions. To be explicit, let us consider the case
of the couples. One can decide to constrain two other
quantities to their mean value, let us say the quantities y,
and y, instead of a; and «a, given by (9) and (11). Indeed,
if we consider intensive quantities of the kind

1 N
7’1=N ‘_§1¢1(77i’7]i+1) >

(18)
1 N
7’1:F > $(nimiv1)

i=1

where ¢(7;,m; +,) and ¢,(7;,m; +,) are two independent
sufficiently regular functions of two variables, then con-
straining the quantities (18) is equivalent to imposing
a;=0 and a,=0 by virtue of the dichotomic properties
of the 7’s. In other terms, the two ensembles of full
probability measure selected by the different constraints
{a;=0,a,=0} or {y,;=7,,72=7¥,] coincide. The gen-
eralization to n-ples with n>2 is immediate. The se-
quence of estimates Ly,L,,...,L, converges to A, since
the Lyapunov exponent of a specific realization of the
product of random matrices can be written as a function
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only of the variables of type (14), such as a;,a,, ..., and
so on. Note that in general the number of these variables
is infinite. A rigorous proof of this statement can be
found in the Appendix of [10].

In the Ising model, one sees that when n-— o the
quenched system has the same degree of frustration as
the constrained annealed system, since the former as well
as the latter can be regarded as the superposition of frus-
trated segments of different sizes # =n. The convergence
of L, toward the Lyapunov exponent seems to be ex-
tremely fast, probably exponent in n, at least for nonzero
temperature. For instance, in the random field Ising
model at inverse temperature S=1, the maximum rela-
tive error is 30% for L,, 10% for L, 1.5% for L,, and
0.2% for L.

The method of constrained annealed averages is also
able to give good estimates of other thermodynamical
quantities, such as the quenched magnetization, defined
as

im (L3 (19)
m= lim (— i)
N— o < N ,'g] Ul>

where ( ---) represents the thermodynamic average.
The magnetization m is related to the derivative of the
free energy

=—Tt==—" 20

T T8H BoH 20)

so that the difficulty of calculating the magnetization is

almost the same as for f (or A). It is thus natural to in-

troduce an estimate m, of the quenched magnetization,
substituting A for an upper bound L, in (20):

_19L,
"B 8H
However, m, is not an upper bound of m different from

L, and A, although we expect that m,, is quickly conver-
gent to m at increasing n.

m (21)

To be explicit, let us consider

mo=L1 9 1
2 BO8H N>w N

N
IT A,

i=1

e —N(,ufal+,u;‘a2)

Xln |Tr ) (22)

where (uf,uy) are the values of the Lagrange multipliers
that realize the minimum (12). After simple algebraic
manipulations, one obtains

N * *
—N(pya;+py ay)
Tr UZHl A, |e
. 1=
m,= lim ,  (23)
N— N * *
—N(pja +pyay)
Tr | I1 A’h— e
i=1
where
+1 0
9: =10 -1

is a Pauli matrix. As previously discussed, the denomina-
tor in (23) can be reduced to the trace of the Nth power of
the transfer matrix G,(uf,us). It is easy to show that
even the numerator can be expressed in a similar way, so
that

_ Tr(D,GY(ut,u3))
m;= N(, % %
N—eo  Tr(Gy(ut,u;))
=(S; (pt,u3 DSy (ut, w3 Nt (24)
where D, is the 4 X4 matrix
g, O
D,= ,
2 0 o,

and S,(uf,u3) is the matrix of the similarity transforma-
tion which diagonalizes G,(uf,u3 ), such that
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(87 '}, u3)G(ut, 13 )8}, u3)),, , =expL, .

From the computational point of view, m, can easily be
evaluated, once L, is known.

In the general case, for m, one obtains an expression
similar to (24), where S,(u) is the 2"X2" matrix of the
similarity transformation which diagonalizes the related
transfer matrix G,(u), and D, is a diagonal matrix with
entries equal to *1, alternated along the diagonal. In
Fig. 6, we compare mg,...,m; with the values of
quenched magnetization obtained by derivating a polyno-
mial fit of numerical calculation of the free energy with
respect to A, for =2 and =1, as functions of H.

In conclusion, we have introduced a general tool to es-
timate the Lyapunov exponent A as a product of binomial
random matrices by a nonincreasing sequence of bounds
L,. These bounds are obtained by annealed averages
with constraints related to the frequency of all the 7i-ple
of consecutive matrices, with 77 < n.

In particular we have applied the procedure to a one-
dimensional Ising model with binomial disorder, where
we have obtained extremely accurate estimates of the
quenched free energy and the magnetization, more pre-
cise than the numerical results. In this model the effect
of the constraints has a simple physical interpretation: it
prevents the disappearance of frustration on larger and
larger segments of contiguous sites. These segments are
the one-dimensional analog of plaquettes of larger and
larger perimeters in spin glasses with dimension d =2,
where such a procedure was suggested by Toulouse and
Vannimenus [3]. However, in that case, an analytic ap-
proach is very difficult (see, e.g., [10,11] for some partial
results) and only Monte Carlo calculations with the con-
straints related to the elementary plaquette (the plaquette
of smallest size) have been performed [4], as far as we
know. On the other hand, our type of constraints might
be useful in some disordered models in dimension d=2 or
3, by considering strips or squares on the lattice, and the
related transfer matrices. Some work is in progress along
this line.
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FIG. 6. Ising model (6) with S=1: numerical results of the
quenched magnetization m (circles) as functions of H, compared
with the annealed estimates mg, m |, m,, and m;, at h=2. The
size of the circles does not represent the error of the numerical
estimates.
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APPENDIX

In this appendix we prove that the argument of the
logarithm in (8) is equivalent to the trace of the Nth
power of an appropriate transfer matrix G(u), i.e.,

N
e MeTOTr [T A, =TrG"(p)

i=1

(A1)

if the quantities a={a, ...} are of type (14). The gen-
eralization of the following results to the case of mul-
tinominal variables {7,] related to matrices A, of a size

greater than 2 X2 is straightforward, and can be found in
[91.

As previously discussed, to impose that the frequency
of every different n-ple of consecutive matrices is fixed by
the law of large numbers, one has to take into account
every possible quantity (14) with £k <»n —1. With this re-
quirement, it is easy to show that the left-hand side of
(A1) can be written in the form:

N
—Nula—a)
e Tr H1 A,
i=

where g(7;,...,M;+,-1) is a 2X2 matrix depending on
n variables {7;,...,7M;4+,—:}. For instance, for n=1
(the case of one constraint a; =0) one has

81(171):%A7,fe —Hm ,

and result (A1) is trivial with

Gi(u)= 3 gln).
1]1=i1

G () is thus a matrix of the same size of g,(7,).

The key point is that when g depends on more than
one variable 7;, we can write a transfer matrix G (we now
omit the dependence on u) of size larger than
g(n;s .. .M +,—1), although many entries of G are zero.
The matrix G should be built up as a block matrix, start-
ing from the different matrices g(7;,...,%;+,—1). From
the parameters {7;,...,7;+,—1} We obtain the arrow
and column index of the single block, in such a way that

the former becomes the latter when i —i+ 1. We thus
obtain a 2 X2 block of G as
G(n,.,.,.,ni+n,2),(ni+l ..... 7,,,+",1):g(77n st ’771'+n—1) .

The remaining blocks are 2 X2 zero matrices, so that one
has
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=g+ sMi4n—2€+n—2)  Wwhere §,, is the 2X2 identity matrix if @ =b, and the
zero matrix otherwise. In conclusion, G is a matrix of
itn—2 size 2"X2", and each arrow has only four non-zero en-
x IT 8, . > (A3) tries (only for n=2 are all the elements of G nonzero).
s=i+1 07! Using (A3), the trace of G" is given by

Mo e Mign—2h(8 s € p —3)

n— N . . .
I1 s(&, .., &6 20 | (A4)

i=1

Tr 2 “ee 2

(1) (1) (N) (N)
§1 ""'gnfl §1 Y"'!gn—l

N
I1
i=1

1
8é«(i} §“+”
2 s ?9s—1

s=

It is easy to see that in (A4) there are N groups of n —1 indices £ which are equal, because of the various 6 matrices. In
particular, one has

(i) — gli+s—1) Vs=1,...,n—1
gs —gl Vi=1,.._’N

(periodic boundary conditions are assumed), and, as a consequence,
N .
TIGV=Tr 3 IT &(&?, ... gitn=1), (A5)
gl gV =t

Recalling (A2), this concludes the proof.
Let us finally write the form of G for n=2 (the constraint on the couples of matrices) and 3 (triples) which are used in
this paper to determine L, and L;. In the former case, we have the 4 X4 matrix

g1, +1) gy(+1,—1)
Galkuka)= g (—1,4+1) gy—1,—1) |’

with the 2 X2 block matrices

gz(”’h,”lz):%Anle TR
while in the latter case we have the 8 X 8 matrix
gi(+1,+1,+1) gy(+1,+1,—1) 0 0
0 0 gi(+1,—1,+1) gy(+1,—1,—1)
Galbolobs )= | (—1,+1,+1) gy(—1,+1,—1) 0 0 ,
0 0 gi(—1,—1,+1) gy(—1,—1,—1)

with the 2 X2 block matrices

g, 7']3)=iA e_#1’71_“2’71’72"“3’71"3'“4T/1’727’3
b b 2 1’1 .
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